![]() 具有視需要氧化釔覆蓋層之經a1on塗佈之基質
专利摘要:
揭示一種位於陶瓷基質上之抗氟電漿塗層。在一個具體實例中,該組成物包括覆蓋基質之約2微米厚的AlON塗層及視需要具有之覆蓋該AlON塗層之約3微米厚的氧化釔塗層。 公开号:TW201312709A 申请号:TW101128924 申请日:2012-08-10 公开日:2013-03-16 发明作者:Nilesh Gunda 申请人:Entegris Inc; IPC主号:H01L21-00
专利说明:
具有視需要氧化釔覆蓋層之經AlON塗佈之基質【相關申請案】 本申請案主張2011年8月10日申請之美國臨時申請案第61/521,822號之權益。上述申請案之整個教示內容以引用的方式併入本文中。 揭示一種位於陶瓷基質上之抗氟電漿塗層。在一個具體實例中,組成物包括覆蓋基質之約2微米厚的AlON塗層及視需要具有之覆蓋該AlON塗層之約3微米厚的氧化釔塗層。 發明背景 對石英及其他陶瓷基質上抗氟電漿塗層存在持續需求。此等基質為透明且經常在用於半導體製造之塗佈及蝕刻系統中使用。氟電漿會損壞此等基質,產生會污染半導體製程晶圓的微粒。在半導體製造中,鋁亦可為半導體晶圓之污染源。 發明之技術內容 本發明係關於經氮氧化鋁(AlON)塗佈之基質,諸如石英、鋁合金、鋼、氧化鋁、金屬、合金及會接觸氟電漿的其他基質。AlON塗層藉由反應性脈衝直流磁控濺鍍製程沈積於基質上達到約1微米至約10微米之厚度。 AlON可為基質上唯一的塗層,或其可具有氧化釔覆蓋層,從而在基質上形成雙層塗層。層厚度將取決於基質與氟電漿源的接近程度及電漿強度。氧化釔層可藉由與用於AlON層之沈積方法相同的沈積方法沈積於AlON層上,達到約1微米至約10微米之厚度。 在一個具體實例中,當AlON為基質上唯一的塗層時,塗層厚度為約5微米至約6微米。 在另一個具體實例中,當氧化釔覆蓋於AlON塗層上時,氧化釔層與AlON層之組合塗層厚度可為約5微米至約6微米。 塗層純度高且藉由掃描電子顯微鏡(SEM)所見,其形態光滑、緻密且展現均一的微觀結構,而無在氟電漿條件下會削弱塗層的柱狀結構。塗層能夠貼合基質表面。具有視需要氧化釔覆蓋層之AlON塗層可增強對氟電漿腐蝕的抗性且減少顆粒污染。 發明之詳細說明 為了描繪本發明之某些態樣,包括形成本說明書之一部分的附圖。藉由參照附圖中所說明的例示性(且因此非限制性)具體實例將更容易清楚地瞭解本發明及本發明所提供之系統的元件及操作,其中相同元件符號表示相同元件。請注意,附圖中所說明的特徵不一定按比例繪製。 下文描述本發明之例示性具體實例。 儘管描述了各種組成物及方法,但應瞭解,本發明不限於所描述的特定分子、組成物、設計、方法或方案,因為其可變化。亦應瞭解,描述所用的術語僅用於描述特定型式或具體實例的目的,而非意欲限制本發明之範疇,本發明之範疇僅由所附申請專利範圍限制。 亦須注意,如本文中及所附申請專利範圍中所用,單數形式「一(a/an)」及「該(the)」包括複數個提及物,除非上下文另有明確指示。因此,舉例而言,提及一「AlON」塗層為提及一或多個AlON層及熟習此項技術者所知的其等效物,等等。提及一「氧化釔(yttria)」塗層為提及一或多個氧化釔層及熟習此項技術者所知的其等效物等等。除非另外定義,否則本文中使用的全部技術及科學術語具有一般熟習此項技術者通常所瞭解的相同含義。可使用類似於或等效於本文中所述的方法及材料實施或測試本發明之具體實例。本文中提及的全部公開案以全文引用的方式併入本文中。不應理解本文中承認本發明無權先於先前發明所作之此類揭示內容。「視需要(optional/optionally)」意謂隨後所述事件或情境可能發生或可能不發生,且此描述包括該事件發生之情形及其不發生之情形。本文中之所有數值均可由術語「約(about)」修飾,不論是否明確指明。術語「約」一般指熟習此項技術者會視為與所列值等效(亦即,具有相同功能或結果)之數值範圍。在一些具體實例中,術語「約」指所述值±10%;在其他具體實例中,術語「約」指所述值±2%。儘管組成物及方法按照「包含(comprising)」多個元件或步驟來描述(解釋為意謂「包括但不限於(including,but not limited to)」),但組成物及方法亦可「基本上由多個元件及步驟組成」或「由多個元件及步驟組成」,此術語應解釋為定義基本上閉合或閉合之成員群組。 雖然本發明已關於一或多個實施例加以顯示及描述,但其他熟習此項技術者基於對本說明書及附圖的閱讀及理解可想到等效變更及修改。本發明包括所有此等修改及變更且僅由以下申請專利範圍之範疇限定。另外,雖然本發明之具體特徵或態樣可能已關於若干實施例中之一者加以揭示,但對於任何指定或特定應用可能需要且有利時,此特徵或態樣可與其他實施例之一或多個其他特徵或態樣組合。此外,就實施方式或申請專利範圍中使用術語「包括(includes)」、「具有(having/with)」或其變化形式而言,此等術語意欲類似於術語「包含」為包涵性的。此外,術語「例示性(exemplary)」僅意謂實例,而非最佳。亦應瞭解,出於簡明易懂起見,本文中所述的特徵、層及/或元件以特定尺寸及/或相對於彼此的取向來說明,且實際尺寸及/或取向可能與本文中所說明的尺寸及/或取向實質上不同。 保護石英及其他陶瓷基質以防氟電漿腐蝕、同時最小化鋁污染的問題如下解決:在類似陶瓷的石英上沈積約1微米至10微米的氮氧化鋁(AlON)塗層,接著在AlON上塗佈約1微米至10微米的氧化釔塗層。此等塗層的組合得到透明且可受氟電漿加工的複合物,如根據對經塗佈之石英基質之EDS(能量色散X-ray光譜學)分析不存在氟所證明。塗層黏附於下伏石英或陶瓷基質上,如藉由Scotch®膠帶(購自3M)測試所測定。氧化釔覆蓋塗層不含鋁。與石英上唯一的氧化釔塗層相比,石英基質上AlON與氧化釔塗層之組合可增強對氟電漿腐蝕的抗性,且減少顆粒污染。 不希望受理論束縛,本發明人已發現,若石英上具有唯一的氧化釔塗層,則氟電漿中的氟似乎會穿透氧化釔柱狀結構且侵蝕下伏石英。此問題的解決方案為石英上存在AlON層,接著在該AlON上視需要存在氧化釔層。 本發明之一個型式為包括覆蓋石英基質之約2微米厚的AlON塗層、覆蓋該AlON塗層之約3微米厚的氧化釔塗層的組成物。AlON及氧化釔塗層可藉由脈衝反應性物理氣相沈積法沈積。沈積AlON產生接近於主體AlON之化學計量組成的塗層。氮氧化鋁陶瓷可獲自於Surmet公司之商標ALON®光學陶瓷。 AlON組成及性質提供於表1中。 氧化釔組成及性質提供於表2中。 雖然下文所提供的實例使用石英作為基質,但本發明可使用任何會接觸氟電漿的基質。此外,任何需要防止接觸氟的含鋁基質可在本發明中用作基質。適當基質之實例包括(但不限於)含鋁陶瓷、鋼、鋁、氧化鋁、石英及其他金屬、合金及陶瓷。熟習此項技術者顯而易知,待塗佈的基質可為半導體製造中所用之會接觸氟電漿環境的任何設備,諸如(但不限於)腔室及腔室元件、晶圓基座或卡盤、蓮蓬頭、襯墊、環、噴嘴、擋板及扣件,及晶圓輸送元件。 實施例實施例1 實施例1說明本發明之一個具體實例,其中在石英基質上塗佈藉由脈衝反應性物理氣相沈積技術所製得的AlON塗層(障壁層,可購自Entegris公司,Billerica,MA)。在AlON上塗佈氧化釔層(可購自Entegris公司)。將經塗佈之樣品暴露於氟電漿環境。化學分析顯示,頂層不含鋁,但具有類似於氧化釔的組成。此結果顯示,覆蓋石英的抗氟性塗層可用AlON製得,但其上可用不包括鋁的保護性氧化釔塗層覆蓋。 經氧化釔塗佈之石英樣品之詳情如下: ‧在石英基質上沈積總厚度為5 μm的具有障壁層之氧化釔塗層。 ‧圍繞石英之外緣觀察到脫層,但根據Scotch®膠帶試驗,大部分塗層仍黏附於基質上而未剝落。 ‧藉由SEM及EDS分析三種類型的樣品: -塗層薄片之兩面均自石英基質剝落 -先前塗佈之暴露之石英基質 -完整的經塗佈之石英表面。 ‧由於氧化釔塗層及石英不導電,因此帶電會影響SEM影像之品質。 觀察總結 ‧具有障壁層之氧化釔塗層展現比先前唯一氧化釔塗層增強的抗氟腐蝕性。 ‧在黏附之氧化釔塗層及自石英基質邊緣剝離之氧化釔薄片上觀察到不同形態及組成。 -邊緣之電漿強度。 參見圖1F至圖5。藉由X光光電子能譜(XPS)分析AlON塗層與AlON陶瓷之元素組成且結果顯示於圖1B中。 實施例2 實施例2為石英基質上具有唯一氧化釔塗層之比較實施例。 ‧在石英基質上沈積5 μm氧化釔。 ‧在氧及氟電漿環境中加工之後觀察到氧化釔塗層脫層。 ‧藉由SEM及EDS分析三種類型的樣品: -用碳膠帶自石英基質剝離塗層 -由碳膠帶黏著之塗層薄片 -石英基質。 ‧由於氧化釔塗層及石英不導電,因此帶電會影響SEM影像之品質。 觀察總結 ‧氧化釔展現遍及塗層厚度的柱狀結構。 ‧自氧化釔塗層之正面與背面均偵測到氟(-15 at.%),且在塗層背面觀察到較高氟濃度(>30 at.%)的殘餘物。 ‧在氧化釔塗層背面偵測到的Si可忽略不計。 ‧對氧化釔塗層橫截面之分析揭示柱狀結構中的高H濃度。 ‧整個石英基質由具有多晶結構之化學計量性二氧化矽組成。 ‧沿著SiO2晶粒邊界形成氟化物(「晶粒間腐蝕」),但晶粒主體保持完整。 ‧晶粒邊界中亦偵測到Al,其為可能偏析的雜質(氧化物或矽酸鹽)且與氟反應而形成氟化鋁。 ‧塗層脫層之可能機制:氟穿透氧化釔塗層之柱狀結構邊界且侵蝕石英基質,沿著晶粒邊界形成氟化物,使頂層之氧化釔塗層開裂。 ‧參見圖6至13。 實施例3 實施例3為石英基質上具有唯一氧化釔塗層之比較實施例及石英基質對照物,其暴露於氟電漿6小時。 ‧兩個石英樣品在氟電漿中留置6小時。 -#1:無氧化釔塗層之新石英樣品 -#2:經氧化釔塗佈(雙面)之石英樣品 ‧正面(暴露於氟)與背面(未暴露於氟)均藉由SEM及EDS檢查。 ‧樣品#2未觀察到氧化釔塗層脫層。 ‧參見圖14至19。 實施例4 實施例4為AlON塗層之紅外光(IR)透射率。 ‧AlON塗層之紅外光(IR)性質藉由用傅立葉轉換紅外光譜儀(FT-IR)量測塗有3 μm AlON之藍寶石樣品在IR光譜範圍內之透射率來特性化。 ‧亦量測作為參照物之AlON陶瓷(0.125吋厚)及藍寶石(0.02吋厚)樣品的IR透射率。 ‧藍寶石在波長2.7 μm至7.5 μm之IR範圍內具有100%透射率。經AlON塗佈之藍寶石的IR透明度範圍與藍寶石相同,但透射率減少約20%。AlON陶瓷在波長2.5 μm至6 μm範圍內展現略小於80%的IR透射率。 ‧參見圖20。 實施例5 實施例5為抗氟腐蝕性比較。 ‧使AlON塗層、主體氧化鋁及鋁6061合金暴露於氟離子電漿。 ‧使用遮罩及輪廓測定法量測腐蝕速率且數據顯示於表3中。 ‧使AlON塗層及石英暴露於另一個氟離子電漿。 ‧使用遮罩及輪廓測定法量測腐蝕速率且數據顯示於表4中。 當結合以下描述及附圖考量時,可更好地理解及瞭解本發明之此等及其他態樣。指明本發明之多個具體實例及其許多具體細節的以下描述為了說明而非為了限制而給出。在本發明範疇內可進行許多替換、修改、添加或重排,且本發明包括所有此等替換、修改、添加或重排。 圖1A為顯示形態之AlON表面顯微照片。 圖1B顯示AlON塗層與AlON陶瓷之元素組成,如藉由X射線光電子光譜學(XPS)所分析。 圖1C顯示AlON橫截面與形態之SEM影像。 圖1D顯示氧化釔橫截面與形態之SEM影像。 圖1E顯示氧化釔塗層形態之顯微照片。 圖1F顯示塗層薄片正面之分析,顯示鋁、氧化釔、氧及氟。 圖2顯示塗層薄片背面之分析。 圖3顯示暴露於氟電漿環境之樣品的SEM顯微照片。 圖4顯示暴露於氟電漿之具有氧化釔(釔25%,氧75%)塗層及AlON(41% Al,57%氧,2%氮)障壁層的石英樣品;AlON塗層覆蓋石英。根據EDS,所標識層的組成實質上對應於如下層組成;層1及層2類似於氧化釔,層3類似於AlON,層4類似於石英。請注意,層1中未偵測到鋁且層4中未偵測到氟。 圖5顯示完整的氧化釔塗層。 圖6說明石英基質上唯一的氧化釔塗層。 圖7顯示氧化釔塗層(剝離)背面之顯微照片。 圖8顯示氧化釔塗層(剝離)背面之顯微照片。 圖9顯示氧化釔塗層(剝離)正面之顯微照片。 圖10顯示暴露於氟電漿之氧化釔塗層之掃描電子顯微照片(SEM)。底部SEM中顯示氧化釔塗層之兩個區域:晶粒區域及柱狀區域。亦顯示此等區域各自之能量色散X-ray光譜學(EDS)。本發明人觀察到塗層之「柱狀」區域顯示之氟含量(11%)似乎大於「晶粒」區域中之氟含量(0%)的問題,且不希望受到理論束縛,似乎柱狀區域允許氟電漿中的氟穿透此等區域中的氧化釔塗層,隨後損壞下伏石英。 圖11顯示氧化釔塗層(薄片)之掃描電子顯微照片。 圖12顯示在石英基質之不同部分所拍的掃描電子顯微照片,如中心圖例所示。 圖13顯示氟電漿穿過氧化釔塗層之柱狀晶粒結構侵蝕石英。 圖14顯示氟電漿穿過氧化釔塗層之柱狀晶粒結構侵蝕石英。 圖15顯示無氧化釔塗層之石英基質之正面及背面的掃描電子顯微照片。 圖16顯示無氧化釔塗層之石英基質之正面及背面的EDS掃描。 圖17顯示經氧化釔塗佈之石英之正面及背面的掃描電子顯微照片。 圖18顯示經氧化釔塗佈之石英基質之正面及背面之EDS掃描。 圖19顯示經氧化釔塗佈之石英樣品之邊緣的電子掃描顯微照片。 圖20顯示AlON塗層、AlON陶瓷及藍寶石樣品之FT-IR透射光譜(波長2.5 μm至8 μm)。
权利要求:
Claims (8) [1] 一種基質,其包含覆蓋該基質的AlON層及視需要存在之覆蓋該AlON之氧化釔層。 [2] 如申請專利範圍第1項之基質,其中該AlON層之厚度為約1微米至約10微米。 [3] 如申請專利範圍第2項之基質,其中該AlON層之厚度為約2微米至約3微米。 [4] 如申請專利範圍第1項之基質,其中該氧化釔層之厚度為約1微米至約10微米。 [5] 如申請專利範圍第4項之基質,其中該氧化釔層之厚度為約2微米至約3微米。 [6] 如申請專利範圍第1項之基質,其中該AlON層、該氧化釔層或兩者係藉由脈衝反應性物理氣相沈積法沈積於該石英基質上。 [7] 如申請專利範圍第1項至第6項中任一項之基質,其中該基質為石英、氧化鋁、鋁、鋼、金屬、合金或陶瓷。 [8] 如申請專利範圍第7項之基質,其中該石英為具有多晶結構之化學計量性二氧化矽。
类似技术:
公开号 | 公开日 | 专利标题 JP6404381B2|2018-10-10|任意のイットリア被覆層を有するAlONコーティングされた基体 TWI665322B|2019-07-11|離子輔助沉積的稀土氧化物之頂部塗層 Kawate et al.2003|Oxidation resistance of Cr1− xAlxN and Ti1− xAlxN films Zhang et al.2018|Preparation, structure, and properties of high-entropy alloy multilayer coatings for nuclear fuel cladding: A case study of AlCrMoNbZr/| N Poza et al.2012|TEM analysis of the microstructure of thermal barrier coatings after isothermal oxidation WO2011066314A1|2011-06-03|Methods of coating substrate with plasma resistant coatings and related coated substrates Ebach-Stahl et al.2013|Cyclic oxidation behaviour of the titanium alloys Ti-6242 and Ti-17 with Ti–Al–Cr–Y coatings at 600 and 700 C in air EP2410072B1|2014-11-19|Dissolution-inhibiting covering member Khan et al.2003|Heat treatment of thermal barrier coatings Kuptsov et al.2015|Surface modification of TiAlSiCN coatings to improve oxidation protection Soares et al.2019|Structure and high temperature oxidation of Zr | Mo | N thin films deposited by reactive magnetron sputtering Jeong et al.2017|Characterization of interfacial layers grown between magnesium substrates and SiOx films deposited by plasma-enhanced CVD Park et al.2013|Deposition behavior and microstructural features of vacuum kinetic sprayed aluminum nitride Krell et al.1999|Graded EB-PVD alumina-zirconia thermal barrier coatings-an experimental approach Zhigalina et al.2018|Structure of Diamond-Like Silicon–Carbon Films Alloyed by Vanadium Yi et al.2014|A comparison of oxidation behavior of Al coatings prepared by magnetron sputtering and arc ion plating on y-TiAl Geng et al.2021|Impact of Si addition on oxidation resistance of Zr–Si–N nanocomposite films WO2016104303A1|2016-06-30|エンジン用圧縮機翼 Cheong et al.2010|Thermal stablility and oxidation resistance of CrAlSiN nano-structured coatings deposited by lateral rotating cathode arc JP2013044382A|2013-03-04|船舶用ピストンリング及びその製造方法 Lin et al.2020|Silica gel-coated silicon carbide layer deposited by atmospheric plasma spraying Merij et al.2015|Use of Cr interlayer to promote the adhesion of Sic films deposited on Ti-6Al-4V by Hipims Gorokhovsky2010|Characterization of thick ceramic and cermet coatings deposited by an industrial-scale LAFAD process JP2013076142A|2013-04-25|耐食性部材及びその製造方法 Khan et al.2009|Microstructural evaluation of ZrO2–MgO coatings
同族专利:
公开号 | 公开日 WO2013023029A8|2013-06-27| CN103918065A|2014-07-09| CN108425090A|2018-08-21| JP2014522916A|2014-09-08| US10840067B2|2020-11-17| TWI584421B|2017-05-21| KR20140052011A|2014-05-02| SG2014008239A|2014-03-28| US9761417B2|2017-09-12| US20140178679A1|2014-06-26| US20170338082A1|2017-11-23| EP2742525A2|2014-06-18| WO2013023029A2|2013-02-14| KR101998440B1|2019-07-09| WO2013023029A3|2013-05-02| JP6404381B2|2018-10-10| EP2742525A4|2015-04-01| JP2017128811A|2017-07-27|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 US4950558A|1987-10-01|1990-08-21|Gte Laboratories Incorporated|Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof| AU2211488A|1987-10-01|1989-04-06|Gte Laboratories Incorporated|Oxidation resistant, high temperature thermal cyling resistant coatings on silicon-based substrates and process for the production thereof| JP2757221B2|1990-01-09|1998-05-25|アルプス電気株式会社|酸窒化アルミニウムの合成方法| JPH0661335A|1992-08-04|1994-03-04|Ulvac Japan Ltd|半導体製造装置用の基板保持プレート| JPH07153370A|1993-11-30|1995-06-16|Kyocera Corp|放電管| JP3351614B2|1994-03-29|2002-12-03|株式会社メガチップス|ビーム照射装置およびビーム照射方法| JP4925681B2|1995-12-28|2012-05-09|京セラ株式会社|耐食性部材| JP3698382B2|1997-03-04|2005-09-21|パイオニア株式会社|電子放出素子及びこれを用いた表示装置| JPH11214194A|1998-01-30|1999-08-06|Kyocera Corp|プラズマ処理装置用窓部材| JP3311308B2|1998-03-03|2002-08-05|株式会社オハラ|垂直磁気記録媒体用ガラスセラミックス基板| JP3550306B2|1998-11-27|2004-08-04|京セラ株式会社|耐プラズマ性部材及びその製造方法| EP1145338B1|1998-12-16|2012-12-05|Samsung Display Co., Ltd.|Environmental barrier material for organic light emitting device and method of making| JP4732599B2|2001-01-26|2011-07-27|株式会社日立製作所|薄膜トランジスタ装置| CN1484855A|2001-08-10|2004-03-24|揖斐电株式会社|陶瓷接合体| JP4137460B2|2002-02-08|2008-08-20|株式会社半導体エネルギー研究所|半導体装置の作製方法| US20080213496A1|2002-02-14|2008-09-04|Applied Materials, Inc.|Method of coating semiconductor processing apparatus with protective yttrium-containing coatings| US7311797B2|2002-06-27|2007-12-25|Lam Research Corporation|Productivity enhancing thermal sprayed yttria-containing coating for plasma reactor| KR100961279B1|2002-08-14|2010-06-03|주식회사 코미코|도포법을 이용한 플라즈마처리 용기 내부재의 제조방법과그 방법으로 제조된 내부재| US7220497B2|2003-12-18|2007-05-22|Lam Research Corporation|Yttria-coated ceramic components of semiconductor material processing apparatuses and methods of manufacturing the components| US20060008676A1|2004-07-07|2006-01-12|General Electric Company|Protective coating on a substrate and method of making thereof| US7608335B2|2004-11-30|2009-10-27|Los Alamos National Security, Llc|Near single-crystalline, high-carrier-mobility silicon thin film on a polycrystalline/amorphous substrate| KR20060072680A|2004-12-23|2006-06-28|주식회사 하이닉스반도체|반도체 장치의 커패시터 및 그 제조방법| JP2007016272A|2005-07-06|2007-01-25|Ge Speciality Materials Japan Kk|基板上に被覆形成される保護膜及びその製造方法| JP5031259B2|2006-04-27|2012-09-19|京セラ株式会社|耐食性部材とその製造方法およびこれを用いた半導体・液晶製造装置| US20080006204A1|2006-07-06|2008-01-10|General Electric Company|Corrosion resistant wafer processing apparatus and method for making thereof| JP2008080712A|2006-09-28|2008-04-10|Toyoda Gosei Co Ltd|光輝性及び不連続構造の金属皮膜を有する樹脂製品| WO2008041402A1|2006-10-02|2008-04-10|Sumitomo Electric Industries, Ltd.|outil de découpe d'un revêtement de surface| KR20080051572A|2006-12-06|2008-06-11|주성엔지니어링|유기 전계 발광 소자 및 그 제조 방법| JP5527956B2|2007-10-10|2014-06-25|株式会社半導体エネルギー研究所|半導体基板の製造方法| JP2009287058A|2008-05-27|2009-12-10|Hakumaku Process:Kk|直流反応性対向ターゲット方式スパッタリング成膜方法、その成膜方法によって形成される純イットリア耐食膜、及び耐食性石英構成体| US7929269B2|2008-09-04|2011-04-19|Momentive Performance Materials Inc.|Wafer processing apparatus having a tunable electrical resistivity| JP5307671B2|2008-10-23|2013-10-02|日本碍子株式会社|窒化アルミニウム基複合材料、その製造方法及び半導体製造装置用部材| US9017765B2|2008-11-12|2015-04-28|Applied Materials, Inc.|Protective coatings resistant to reactive plasma processing| US7947582B2|2009-02-27|2011-05-24|Tel Epion Inc.|Material infusion in a trap layer structure using gas cluster ion beam processing| JP5589310B2|2009-06-03|2014-09-17|株式会社ニコン|被膜形成物の製造方法| JP5413137B2|2009-11-09|2014-02-12|日亜化学工業株式会社|発光装置および発光装置の製造方法| US20110135915A1|2009-11-25|2011-06-09|Greene, Tweed Of Delaware, Inc.|Methods of Coating Substrate With Plasma Resistant Coatings and Related Coated Substrates| WO2011068032A1|2009-12-04|2011-06-09|Semiconductor Energy Laboratory Co., Ltd.|Display device| JP2013539210A|2010-08-06|2013-10-17|グリーン,ツイードオブデラウェア,インコーポレイテッド|増加した使用寿命を有するプロセスガス導管および関連方法| US9394615B2|2012-04-27|2016-07-19|Applied Materials, Inc.|Plasma resistant ceramic coated conductive article| US20140099491A1|2012-10-09|2014-04-10|Mohammed Ameen|Plasma Etch Resistant Films, Articles Bearing Plasma Etch Resistant Films and Related Methods| US20170032942A1|2013-11-21|2017-02-02|Entegris, Inc.|Surface coating for chamber components used in plasma systems|WO2015061616A1|2013-10-24|2015-04-30|Surmet Corporation|High purity polycrystalline aluminum oxynitride bodies| US20170032942A1|2013-11-21|2017-02-02|Entegris, Inc.|Surface coating for chamber components used in plasma systems| TWI683888B|2015-03-18|2020-02-01|美商恩特葛瑞斯股份有限公司|塗佈有經氟退火膜之物品| WO2019044850A1|2017-09-01|2019-03-07|学校法人 芝浦工業大学|部品および半導体製造装置|
法律状态:
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 US201161521822P| true| 2011-08-10|2011-08-10|| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|